SOLAR RADIO NOISE STORM AT 164 MHZ # FROM NANÇAY RADIOHELIOGRAPH #### **FEBRUARY 2006** | | HELIOGRAPHICS POSITIONS
MEAN VALUES ¹ | | IMP ² | OBSERVINO | 3 TIME ³ | |-----------|---|-------|------------------|-----------|---------------------| | | E-W | S-N | | START(UT) | END(UT) | | 16/02/06* | -0.21 | +0.18 | I | 8H35 E | 15H35 D | ## SOLAR RADIO NOISE STORM AT 327 MHZ ### FROM NANÇAY RADIOHELIOGRAPH #### **FEBRUARY 2006** | | HELIOGRAPHI
MEAN V | | IMP ² | OBSERVING TIME ³ | | |-----------|-----------------------|-------|------------------|-----------------------------|---------| | DAY | E-W | S-N | | START(UT) | END(UT) | | 16/02/06* | -0.21 | +0.13 | I | 8H35 E | 15H35 D | # OTHERS DAYS: NO DETECTABLE NOISE STORM - * For the days marked by an asterisk, intense ionopheric gravity waves are observed during the whole day. Without a more detailed analysis, leading to decreased uncertainties in the deviation, the positions which are indicated are estimatedithin 0.2 R - ** Following a large burst *** importance not well determined due to the proximity off the very strong other source **** no flux measurements available ¹ POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT ² IMP1: FLUX< 5 SFU IMP2: 5< FLUX < 20 SFU IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU IMP5> 300 SFU ³ E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANÇAY OBSERVATIONS D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS